Что такое квантовый компьютер. Квантовые компьютеры - что это такое? Принцип работы и фото квантового компьютера Квантовый процессор принцип работы

На прошлой неделе появилась новость о том, что Google совершили прорыв в разработке квантового компьютера -
в компании поняли, как такой компьютер будет справляться
с собственными ошибками. О квантовых компьютерах говорят уже несколько лет: его, например, на обложку журнала Time. Если такие компьютеры появятся, это будет прорыв сродни появлению классических компьютеров - а то и серьёзнее. Look At Me объясняет, чем хороши квантовые компьютеры и что именно сделали в Google.

Что такое квантовый компьютер?


Квантовый компьютер - это механизм на стыке компьютерных наук и квантовой физики, самого сложного раздела теоретической физики. Ричард Фейнман, один из крупнейших физиков XX века, как-то сказал: «Если вы думаете, что понимаете квантовую физику, значит, вы её не понимаете». Поэтому учтите, что последующие объяснения - невероятно упрощённые. На то, чтобы разобраться в квантовой физике, люди тратят долгие годы.

Квантовая физика занимается элементарными частицами меньше атома. То, как эти частицы устроены и как они себя ведут, противоречит многим нашим представлениям о Вселенной. Квантовая частица может находиться в нескольких местах одновременно - и в нескольких состояниях одновременно. Представьте, что вы подкинули монету: пока она находится в воздухе, вы не можете сказать, выпадет орёл или решка; эта монета - как бы орёл и решка одновременно. Примерно так ведут себя квантовые частицы. Это называется принципом суперпозиции.

Квантовый компьютер - это пока ещё гипотетическое устройство, которое будет использовать принцип суперпозиции (и другие квантовые свойства)
для вычислений. Обычный компьютер работает с помощью транзисторов,
которые воспринимают любую информацию как нули и единицы. Бинарным кодом можно описать весь мир - и решать любые задачи внутри него. Квантовый аналог классического бита называется кьюбит (qubit, qu - от слова quantum, квантовый) . Используя принцип суперпозиции, кьюбит может одновременно находиться
в состоянии 0 и 1 - и это не только значительно увеличит мощность по сравнению с традиционными компьютерами, но и позволит решать неожиданные задачи,
на которые обычные компьютеры не способны.

Принцип суперпозиции - единственное,
на чём будут основаны квантовые компьютеры?


Нет. Из-за того, что квантовые компьютеры существуют только в теории, учёные пока только предполагают, как именно они будут работать. Например, считается, что в квантовых компьютерах также будут применять квантовую запутанность.
Это феномен, который Альберт Эйнштейн называл «жутким» (он вообще был против квантовой теории, потому что она не сочетается с его теорией относительности) . Смысл феномена в том, что две частицы во Вселенной могут оказаться взаимосвязанными, причём обратно: скажем, если спиральность
(есть такая характеристика состояния элементарных частиц, не будем вдаваться в подробности) первой частицы положительная, то спиральность второй всегда будет отрицательной, и наоборот. «Жутким» этот феномен называют по двум причинам. Во-первых, эта связь работает моментально, быстрее скорости света. Во-вторых, запутанные частицы могут находиться на любом расстоянии друг
от друга: например, на разных концах Млечного Пути.

Как можно использовать квантовый компьютер?


Учёные ищут квантовым компьютерам применение и одновременно разбираются, как их построить. Главное - то, что квантовый компьютер сможет очень быстро оптимизировать информацию и вообще работать с большими данными, которые мы накапливаем, но пока не понимаем, как использовать.

Давайте представим такой вариант (сильно упрощённый, конечно) : вы собираетесь стрелять из лука в мишень и вам нужно высчитать, насколько высоко целиться, чтобы попасть. Скажем, нужно просчитать высоту от 0 до 100 см. Обычный компьютер будет высчитывать каждую траекторию по очереди: сначала 0 см, потом 1 см, потом 2 см и так далее. Квантовый же компьютер просчитает все варианты одновременно - и моментально выдаст тот, который позволит вам попасть ровно в цель. Таким образом можно оптимизировать много процессов:
от медицины (скажем, раньше диагностировать рак) до авиации (например, делать более сложные автопилоты) .

Ещё есть версия, что такой компьютер сможет решать задачи, на которые обычный компьютер просто не способен - или которые заняли бы у него тысячи лет вычислений. Квантовый компьютер сможет работать со сложнейшими симуляциями: например, высчитать, есть ли во Вселенной разумные существа, кроме людей. Не исключено, что создание квантовых компьютеров приведёт
к появлению искусственного интеллекта. Представьте, что с нашим миром сделало появление обычных компьютеров - квантовые компьютеры могут стать примерно таким же прорывом.

Кто занимается разработкой квантовых компьютеров?


Все. Правительства, военные, технологические компании. Создать квантовый компьютер будет выгодно практически кому угодно. Скажем, среди документов, обнародованных Эдвардом Сноуденом, была информация о том, что у АНБ есть проект «Внедрение в сложные цели», куда входит создание квантового компьютера для шифрования информации. Microsoft всерьёз занимаются квантовыми компьютерами - первые исследования в этой области они начали ещё в 2007 году. IBM ведут разработки и несколько лет назад заявили , что создали чип с тремя кьюбитами. Наконец, Google и NASA сотрудничают
с компанией D-Wave, которая заявляет, что уже сейчас выпускает
«первый коммерческий квантовый процессор» (а точнее уже второй, сейчас их модель называется D-Wave Two) , но он пока не работает как квантовый -
их, напомним, не существует.

Насколько мы близки к созданию
квантового компьютера?


Никто не может сказать точно. Новости о прорывах в технологиях (как недавняя новость о Google) появляются постоянно, но мы можем быть как очень далеки
от полноценного квантового компьютера, так и очень близки к нему. Скажем, есть исследования , говорящие о том, что достаточно создать компьютер всего
c несколькими сотнями кьюбитов, чтобы он работал как полноценный квантовый компьютер. D-Wave заявляют, что создали процессор с 84 кьюбитами -
но критики, проанализировавшие их процессор, заявляют, что он работает,
как классический компьютер, а не как квантовый. Google, сотрудничающие
с D-Wave, считают , что их процессор просто находится на самых ранних стадиях развития и в конце концов будет работать, как квантовый. Так или иначе, сейчас
у квантовых компьютеров существует одна главная проблема - ошибки. Любые компьютеры совершают ошибки, но классические умеют с ними легко справляться - а вот квантовые ещё нет. Как только исследователи разберутся с ошибками, до появления квантового компьютера останется всего несколько лет.

Что затрудняет исправление ошибок
в квантовых компьютерах?


Если упрощать, ошибки в квантовых компьютерах можно разделить на два уровня. Первый - это ошибки, которые совершают любые компьютеры, в том числе классические. В памяти компьютера может появиться ошибка, когда 0 непроизвольно меняется на 1 из-за внешнего шума - например, космических лучей или радиации. Эти ошибки решить легко, все данные проверяют на предмет таких перемен. И с этой проблемой в квантовых компьютерах как раз недавно справились в Google: они стабилизировали цепочку из девяти кьюбитов
и избавили её от ошибок. В этом прорыве есть, впрочем, один нюанс: Google справились с классическими ошибками в классических вычислениях. Есть второй уровень ошибок в квантовых компьютерах, и его гораздо сложнее понять и объяснить.

Кьюбиты крайне нестабильны, они подвержены квантовой декогеренции - это нарушение связи внутри квантовой системы под воздействием окружающей среды. Квантовый процессор нужно максимально изолировать от окружающего воздействия (хотя декогеренция происходит иногда и в результате внутренних процессов) , чтобы свести ошибки к минимуму. При этом от квантовых ошибок невозможно избавиться полностью, - но если сделать их достаточно редкими, квантовый компьютер сможет работать. При этом некоторые исследователи считают , что 99% мощности такого компьютера как раз направят
на устранение ошибок, но и оставшегося 1% хватит для решения любых задач.
По мнению физика Скотта Ааронсона, достижение Google можно считать третьим
с половиной шагом из семи, необходимых для создания квантового компьютера, - иначе говоря, мы прошли половину пути.

Очередной привет всем читателям моего блога! Вчера в новостях проскочила в очередной раз пара сюжетов о «квантовом» компьютере. Мы из школьного курса физики знаем, что квант — это некая одинаковая порция энергии, еще есть словосочетание «квантовый скачок», то есть мнгновенный переход с некоего уровня энергии на еще более высокий уровень.. Давайте вместе разбираться, что такое квантовый компьютер, и что нас всех ожидает, когда появится эта чудо машина

Я впервые начал интересоваться этой темой при просмотре фильмов про Эдварда Сноудена. Как известно, этот американский гражданин собрал несколько террабайт конфидециальной информации (компромата) о деятельности спецслужб США, хорошенько зашифровал ее и выложил в Интернет. «Если, сказал он, со мной что-нибудь случиться, информация будет расшифрована и станет таким образом доступна для всех.»

Расчет был на то, что информация эта «горячая», будет актуальна еще лет десять. А расшифровать ее можно современными вычислительными мощностями то же не меньше, чем через десять или больше лет. Квантовый же компьютер по ожиданиям разработчиков справится с этой задачей минут за двадцать пять.. Криптографы в панике. Вот такой «квантовый» скачок нас скоро ожидает, друзья.

Принципы работы квантового компьютера для чайников

Раз мы уж заговорили о квантовой физике, давайте немножко поговорим о ней. Я не буду углубляться в дебри друзья. Я ведь «чайник», а не квантовый физик. Лет сто назад Энштейн опубликовал свою теорию относительности. Все умные люди того времени удивлялись, как много в ней парадоксов и невероятных вещей. Так вот, все пародоксы Энштейна, описывающие законы нашего мира — просто невинный лепет пятилетнего ребенка по сравнению с тем, что твориться на уровне атомов и молекул.

Сами «квантовые физики», описывающие явления происходящие на уровнях электронов и молекул говорят примерно так: » Это невероятно. Этого не может быть. Но это так. Не спрашивайте нас, как это все работает. Мы не знаем, как и почему. Мы просто наблюдаем. Но это работает. Это доказано экспериментально. Вот формулы, зависимости и записи экспериментов.»

Так в чем же разница между обычным и квантовым компьютером? Ведь обычный компьютер тоже работает на электричестве, а электричество — это куча очень маленьких частиц — электронов?


Наши с Вами компьютеры работают по принципу или «Да» или «Нет». Если есть ток в проводе, это «Да»или «Единица». Если тока в проводе «Нет», то это «Ноль». Вариант значения «1 «и «0» есть единица хранения информации под названием «Бит».. Один байт это 8 бит и так далее и так далее…

Теперь представьте ваш процессор, на котором 800 миллионов таких «проводов» на каждом из которых за секунду появляется и исчезает такой вот «ноль» или «единица». И вы мысленно можете вообразить, как он обрабатывает информацию. Вы сейчас читаете текст, но на самом деле это совокупность нулей и единиц.

Путем перебора и вычислений Ваш компьютер обрабатывает Ваши запросы в Яндексе, ищет нужные до тех пор, пока не решит задачу и путем исключения не докопается до нужной Вам. Выводит на монитор шрифты, картинки в читаемом для нас виде… Пока надеюсь ничего сложного? А картинка — это тоже нули и единицы.

Представьте теперь себе друзья на секунду модель нашей солнечной системы. В центре Солнце, вокруг него летит Земля. Мы знаем, что она в определенный момент всегда находится в определенной точке пространства и через секунду она уже улетит на тридцать километров дальше.

Так вот, модель атома то же планетарная, там атом тоже вращается вокруг ядра. Но ДОКАЗАНО, друзья, умными парнями в очках, что атом в отличии от Земли одновременно и всегда находится во всех местах..Везде и нигде одновременно. И назвали они это замечательное явление «суперпозицией». Для того, чтобы познакомится поближе и другими явлениями квантовой физики, предлагаю глянуть научно-популярный фильм, где простым языком рассказывается о сложном и в довольно оригинальной форме.

Продолжим. И вот на смену «нашему» биту приходит квантовый бит. Его еще называют «Кубит». У него то же всего два исходных состояния «ноль» и «единица». Но, так как природа его «квантовая», то он может ОДНОВРЕМЕННО принимать все возможные промежуточные значения. И одновременно находиться в них. Теперь значения не надо последовательно вычислять, перебирать.., долго искать в базе. Они известны уже заранее, сразу. Вычисления идут параллельно.

Первые «квантовые» алгоритмы для математических вычислений были придуманы еще математиком из Англии Питером Шором в 1997 году. Когда он показал их миру, все шифровальщики здорово напряглись, так как существующие шифры «раскалываются» этим алгоритмом за несколько минут.. Вот только компьютеров, работающих по квантовому алгоритму тогда еще не было.

С тех пор с одной стороны идет работа по созданию физической системы, в которой бы работал квантовый бит. То есть «железа». А с другой стороны уже придумывают защиту от квантового взлома и расшифровки данных.

А что сейчас? А вот так выглядит квантовый процессор под микроскопом на 9 кубит от фирмы Google.

Неужели они нас обогнали? 9 кубит или по «старому» 15 бит, это не так много пока еще. Плюс дороговизна, масса технических проблем и короткое время «жизни» квантов. Но вспомните что сначала были 8 битные, потом появились 16 битные процессоры… Так будет и с этими …

Квантовый компьютер в России — миф или реальность?

А мы что же? А мы то же не за печкой родились. Вот нарыл фото первого российского Кубита под микроскопом. Тут правда он один.

Тоже выглядит как некая «петля», в которой происходит нечто для нас пока не познанное. Отрадно думать, если наши при поддержке государства разрабатывают свое. Так что отечественные разработки это уже не миф. Вот оно, наше будущее. Каким оно будет, посмотрим.

Последние новости о квантовом компьютере России мощностью 51 кубит

Вот новости этого лета. Наши дядечки (честь им и хвала!) разработали самый мощный в мире (!) квантовый (!) компьютер 51 кубит(!)т. Самое интересное то, что до этого Google анонсировало свой компьютер на 49 кубит. И по их оценкам они должны были его закончить через месяц или около того. А наши решили показать уже готовый, свой квантовый процессор на 51 кубит.. Браво! Вот какая идет гонка. Нам хотя бы не отставать. Потому что ожидается большой прорыв в науке, когда эти системы заработают. Вот фото человека, который представлял нашу разработку на «квантовом» международном форуме.

Фамилия этого ученого — Михаил Лукин. Сегодня его имя в центре внимания. Невозможно создать такой проект в одиночку, мы это понимаем. Он и его команда создали на сегодня самый мощный в мире(!) квантовый компьютер или процессор. Вот что говорят по этому поводу компетентные лица:

«Квантовый компьютер функционирующий, он гораздо страшнее атомной бомбы, - отмечает сооснователь Российского квантового центра Сергей Белоусов. - Он (Михаил Лукин) сделал систему, в которой больше всего кубитов. На всякий случай. На данный момент, я думаю, это более чем в два раза больше кубитов, чем у кого-либо другого. И он специально сделал 51 кубит, а не 49. Потому что Google всё время говорили, что сделают 49».

Впрочем, сам Лукин и руководитель квантовой лаборатории Google Джон Мартинес конкурентами или соперниками себя не считают. Учёные убеждены, что их главным соперником является природа, а основной целью - развитие технологий и их внедрение для продвижения человечества на новый виток развития.

«Неправильно думать об этом, как о гонке, - справедливо считает Джон Мартинес. - Настоящая гонка у нас с природой. Потому что это действительно сложно - создать квантовый компьютер. И это просто захватывающе, что кому-то удалось создать систему с таким большим количеством кубитов. Пока 22 кубита - это максимум, что мы могли сделать. Хоть мы и использовали всё своё волшебство и профессионализм».

Да, все это очень интересно. Если вспомнить аналогии, когда изобрели транзистор, никто не мог знать, что на этой технологии через 70 лет будут работать компьютеры. В одном только современном процессоре количество их достигает 700 миллионов..Первый компьютер весил много тонн и занимал большие площади. Но персональные компьютеры все равно появились — много позже…

Я думаю, что пока нам в ближайшее время не стоит ждать появления в наших магазинах устройств такого класса. Многие их ждут. Особенно добытчики криптовалют много спорят по этому поводу. С надеждой взирают на него ученые, и с пристальным вниманием — военные. Потенциал этой разработки как мы понимаем, до конца не ясен.

Ясно только, что когда это все заработает, оно потащит вперед за собой всю наукоемкую промышленность.Постепенно появятся новые технологии, новые отрасли, новый софт.. Время покажет. Только бы не подвел человеков свой собственный квантовый компьютер, данный нам при рождении — это наша голова. Так что, пока не спешите выкидывать на помойку свои гаджеты. Они долго Вам еще послужат. Пишите, если статья была интересной. Заходите чаще. До свидания!

January 29th, 2017

Для меня словосочетание "квантовый компьютер" сравнимо например с "фотонным двигателем", т.е это что то очень сложное и фантастическое. Однако читаю сейчас в новостях - "квантовый компьютер продается любому желающему". Странно, то ли под этим выражением теперь подразумевают что то другое, то ли это просто фейк?

Давайте разберемся подробнее...


КАК ВСЕ НАЧИНАЛОСЬ?

Только к середине 1990-х годов теория квантовых компьютеров и квантовых вычислений утвердилась в качестве новой области науки. Как это часто бывает с великими идеями, сложно выделить первооткрывателя. По-видимому, первым обратил внимание на возможность разработки квантовой логики венгерский математик И. фон Нейман. Однако в то время еще не были созданы не то что квантовые, но и обычные, классические, компьютеры. А с появлением последних основные усилия ученых оказались направлены в первую очередь на поиск и разработку для них новых элементов (транзисторов, а затем и интегральных схем), а не на создание принципиально других вычислитель ных устройств.


В 1960-е годы американский физик Р. Ландауэр, работавший в корпорации IBM, пытался обратить внимание научного мира на то, что вычисления - это всегда некоторый физический процесс, а значит, невозможно понять пределы наших вычислительных возможностей, не уточнив, какой физической реализации они соответствуют. К сожалению, в то время среди ученых господствовал взгляд на вычисление как на некую абстрактную логическую процедуру, изучать которую следует математикам, а не физикам.

По мере распространения компьютеров ученые, занимавшиеся квантовыми объектами, пришли к выводу о практической невозможности напрямую рассчитать состояние эволюционирующей системы, состоящей всего лишь из нескольких десятков взаимодействующих частиц, например молекулы метана (СН4). Объясняется это тем, что для полного описания сложной системы необходимо держать в памяти компьютера экспоненциально большое (по числу частиц) количество переменных, так называемых квантовых амплитуд. Возникла парадоксальная ситуация: зная уравнение эволюции, зная с достаточной точностью все потенциалы взаимодействия частиц друг с другом и начальное состояние системы, практически невозможно вычислить ее будущее, даже если система состоит лишь из 30 электронов в потенциальной яме, а в распоряжении имеется суперкомпьютер с оперативной памятью, число битов которой равно числу атомов в видимой области Вселенной(!). И в то же время для исследования динамики такой системы можно просто поставить эксперимент с 30 электронами, поместив их в заданные потенциал и начальное состояние. На это, в частности, обратил внимание русский математик Ю. И. Манин, указавший в 1980 году на необходимость разработки теории квантовых вычислительных устройств. В 1980-е годы эту же проблему изучали американский физик П. Бенев, явно показавший, что квантовая система может производить вычисления, а также английский ученый Д. Дойч, теоретически разработавший универсальный квантовый компьютер, превосходящий классический аналог.

Большое внимание к проблеме разработки квантовых компьютеров привлек лауреат Нобелевской премии по физике Р. Фейн-ман. Благодаря его авторитетному призыву число специалистов, обративших внимание на квантовые вычисления, увеличилось во много раз.


Основа алгоритма Шора: способность кубитов хранить несколько значений одновременно)

И все же долгое время оставалось неясным, можно ли использовать гипотетическую вычислительную мощь квантового компьютера для ускорения решения практических задач. Но вот в 1994 году американский математик, сотрудник фирмы Lucent Technologies (США) П. Шор ошеломил научный мир, предложив квантовый алгоритм, позволяющий проводить быструю факторизацию больших чисел (о важности этой задачи уже шла речь во введении). По сравнению с лучшим из известных на сегодня классических методов квантовый алгоритм Шора дает многократное ускорение вычислений, причем, чем длиннее факторизуемое число, тем значительней выигрыш в скорости. Алгоритм быстрой факторизации представляет огромный практический интерес для различных спецслужб, накопивших банки нерасшифрованных сообщений.

В 1996 году коллега Шора по работе в Lucent Technologies Л. Гровер предложил квантовый алгоритм быстрого поиска в неупорядоченной базе данных. (Пример такой базы данных - телефонная книга, в которой фамилии абонентов расположены не по алфавиту, а произвольным образом.) Задача поиска, выбора оптимального элемента среди многочисленных вариантов очень часто встречается в экономических, военных, инженерных задачах, в компьютерных играх. Алгоритм Гровера позволяет не только ускорить процесс поиска, но и увеличить примерно в два раза число параметров, учитываемых при выборе оптимума.

Реальному созданию квантовых компьютеров препятствовала, по существу, единственная серьезная проблема - ошибки, или помехи. Дело в том, что один и тот же уровень помех гораздо интенсивнее портит процесс квантовых вычислений, чем классических.


Если сказать простыми словами, то: "квантовая система даёт результат, только с некоторой вероятностью являющийся правильным. Другими словами, если вы посчитаете 2+2, то 4 получится только с некоторой долей точности. Точно 4 вы не получите никогда. Логика его процессора совсем не похожа на привычный нам процессор.

Существуют методы посчитать результат с заранее оговоренной точностью, естественно с увеличением затрат машинного времени.
Этой особенностью и определяется перечень задач. И эта особенность не афишируется, а у публики создается впечатление, что квантовый компьютер, это тоже, что и обычный PC (те же 0 и 1), только быстрый и дорогой. Это принципиально не так.

Да, и еще момент — для квантового компьютера и квантовых вычислений в целом, особенно для того, чтобы использовать "мощь и быстродействие" квантовых вычислений — нужны особые, специально под специфику квантовых вычислений разработанные алгоритмы и модели. Поэтому сложность применения квантового компьютера не только в наличии "железа", но и в составлении новых, до сих пор не применявшихся методик расчета. "

А теперь снова перейдем к практической реализации квантового компьютера: уже ведь некоторое время существует и даже продается коммерческий 512-кубитный процессор D-Wave !!!

Вот, он, казалось бы, настоящий прорыв!!! И группа солидных ученых в не менее солидном журнале Physical Review убедительно свидетельствует, что в D-Wave действительно обнаружены эффекты квантовой сцепленности.

Соответственно, данное устройство с полным основанием имеет право именоваться настоящим квантовым компьютером, архитектурно вполне допускает дальнейшее наращивание числа кубитов, а, значит, имеет замечательные перспективы на будущее… (T. Lanting et al. Entanglement in a Quantum Annealing Processor. PHYSICAL REVIEW X 4, 021041 (2014) (http://dx.doi.org/10.1103/PhysRevX.4.021041))

Правда, чуть позже, другая группа солидных ученых в не менее солидном журнале Science, изучавшие ту же самую вычислительную систему D-Wave, оценивали ее сугубо практически: насколько хорошо это устройство выполняет свои вычислительные функции. И эта группа ученых столь же обстоятельно и убедительно, как и первая, демонстрирует, что в реальных проверочных тестах, оптимально подходящих для этой конструкции, квантовый компьютер D-Wave не дает никакого выигрыша в скорости по сравнению с компьютерами обычными, классическими. (T.F. Ronnow, M. Troyer et al. Defining and detecting quantum speedup. SCIENCE, Jun 2014 Vol. 344 #6190 (http://dx.doi.org/10.1126/science.1252319))

По сути дела, для дорогущей, но специализированной "машины будущего" не нашлось задач, где она могла бы продемонстрировать свое квантовое превосходство. Иначе говоря, оказывается под большим сомнением сам смысл весьма недешевых усилий по созданию подобного устройства…
Итоги таковы: сейчас в научном сообществе уже нет никаких сомнений, что в процессоре компьютера D-Wave работа элементов действительно происходит на основе реальных квантовых эффектов между кубитами.

Но (и это чрезвычайно серьезное НО) ключевые особенности в конструкции процессора D-Wave таковы, что при реальной эксплуатации вся его квантовая физика не дает никакого выигрыша в сравнении с обычным мощным компьютером, имеющим специальное программное обеспечение, заточенное под решение задач оптимизации.

Попросту говоря, не только ученые, тестирующие D-Wave, пока не смогли увидеть ни одной реальной задачи, где квантовый компьютер мог бы убедительно продемонстрировать свое вычислительное превосходство, но даже сама компания-изготовитель понятия не имеет, что это может быть за задача…

Все дело в особенностях конструкции 512-кубитного процессора D-Wave, который собирается из групп по 8 кубитов. При этом, внутри этих групп по 8 кубитов они все напрямую сообщаются между собой, а вот между этими группами связи очень слабые (в идеале же ВСЕ кубиты процессора должны напрямую сообщаться между собой). Это, конечно, ОЧЕНЬ существенно снижает сложность построения квантового процессора... НО, отсюда нарастает масса прочих проблем, замыкающихся в финале и на очень недешевую в эксплуатации криогенную аппаратуру, охлаждающую схему до сверхнизких температур.

Так что же нам предлагают сейчас?

Канадская компания D-Wave объявила о начале продаж своего анонсированного в сентябре прошлого года квантового компьютера D-Wave 2000Q. Придерживаясь собственного аналога закона Мура, в соответствии с которым количество транзисторов на интегральной схеме удваивается каждые два года, D-Wave разместила на КПУ (квантовом процессорном устройстве) 2,048 кубитов. Динамика роста числа кубитов на КПУ за последние годы выглядит так:

2007 — 28

— 2013 — 512
— 2014 — 1024
— 2016 — 2048.

Причем в отличие от традиционных процессоров, ЦПУ и ГПУ, удвоение кубитов сопровождается не 2-кратным, а 1000-кратным ростом производительности. По сравнению с компьютером, имеющим традиционную архитектуру и конфигурацию в виде одноядерного ЦПУ и 2500-ядерного ГПУ, разница в быстродействии составляет от 1,000 до 10,000 раз. Все эти цифры безусловно впечатляют, но есть несколько «но».

Во-первых, D-Wave 2000Q стоит чрезвычайно дорого — $15 млн. Это довольно массивное и сложное устройство. Его мозгом является КПУ из цветного металла под названием ниобий, сверхпроводниковые свойства которого (необходимые для квантовых компьютеров) возникают в вакууме при близкой к абсолютному нулю температуре ниже 15 милликельвинов (это в 180 раз ниже температуры в открытом космосе).

Поддержание такой экстремально низкой температуры требует больших затрат энергии, 25 кВт. Но все же, согласно производителю, это в 100 раз меньше, чем у эквивалентных по производительности традиционных суперкомпьютеров. Так что производительность D-Wave 2000Q на один ватт потребляемой энергии в 100 раз выше. Если компании удастся и дальше следовать своему «закону Мура», то в её будущих компьютерах эта разница будет расти в геометрической прогрессии, с сохранением энергопотребления на нынешнем уровне.

Во-первых, у квантовых компьютеров весьма специфическое назначение. В случае D-Wave 2000Q речь идет о т.н. адиабатических компьютерах и решении задач квантовой нормализации. Они, в частности, возникают в следующих областях:

Машинное обучение:

Выявление статистических аномалий
— нахождения сжатых моделей
— распознавание изображений и образов
— тренировка нейросетей
— проверка и утверждение программного обеспечения
— классификация безструктурных данных
— диагностика ошибок в схеме

Безопасность и планирование

Обнаружение вирусов и взлома сети
— распределение ресурсов и нахождение оптимальных путей
— определение принадлежности множеству
— анализ свойств графика
— факторизация целых чисел (применяется в криптографии)

Финансовое моделирование

Выявление рыночной нестабильности
— разработка торговых стратегий
— оптимизация торговых траекторий
— оптимизация ценообразования активов и хеджирования
— оптимизация портфолио

Здравоохранение и медицина

Выявление мошенничества (вероятно речь идет о медицинских страховках)
— генерирование таргетной («молекулярно-прицельной») лекарственной терапии
— оптимизация лечения [рака] методом радиотерапии
— создание моделей протеина.

Первым покупателем D-Wave 2000Q стала компания TDS (Temporal Defense Systems), занятая в области кибер-безопасности. Вообще же продукцией D-Wave пользуются такие компании и учреждения как Lockheed Martin, Google, Исследовательский центр Эймса при НАСА, Университет Южной Калифорнии и Лос-Аламосская национальная лаборатория при Министерстве энергетики США.

Таким образом, речь идет о редкой (D-Wave является единственной в мире компанией, выпускающей коммерческие образцы квантовых компьютеров) и дорогой технологии с довольно узким и специфическим применением. Но темпы роста её производительности потрясают воображение, и если эта динамика сохранится, то благодаря адиабатическим компьютерам D-Wave (к которой со временем возможно присоединятся и другие компании) в ближайшие годы нас могут ожидать настоящие прорывы в науке и технике. Особый интерес вызывает сочетание квантовых компьютеров с такой перспективной и быстро развивающейся технологией как искусственный интеллект — тем более, что в этом видит перспективу такой авторитетный специалист как Энди Рубин.

Да, кстати, вы знали, что Корпорация IBM разрешила пользователям интернета бесплатно подключаться к построенному ей универсальному квантовому компьютеру и экспериментировать с квантовыми алгоритмами. Этому устройству не хватит мощности, чтобы взламывать криптографические системы с открытым ключом, но если планы IBM осуществятся, то появление более сложных квантовых компьютеров не за горами.

Квантовый компьютер, к которому IBM открыла доступ, содержит пять кубитов: четыре служат для работы с данными, а пятый — для коррекции ошибок во время вычислений. Коррекция ошибок — главное нововведение, которым гордятся его разработчики. Она упростит увеличение количества кубитов в будущем.

В IBM подчёркивают, что её квантовый компьютер является универсальным и способен исполнять любые квантовые алгоритмы. Это отличает его от адиабатических квантовых компьютеров, которые разрабатывает компания D-Wave. Адиабатические квантовые компьютеры предназначены для поиска оптимального решения функций и не подходят для других целей.

Считается, что универсальные квантовые компьютеры позволят решать некоторые задачи, которые не под силу обычным компьютерам. Наиболее известный пример такой задачи — разложение чисел на простые множители. Обычному компьютеру, даже очень быстрому, понадобятся сотни лет, чтобы отыскать простые множители большого числа. Квантовый компьютер найдёт их при помощи алгоритма Шора почти так же быстро, как происходит умножение целых чисел.

Невозможность быстрого разложения чисел на простые множители — это основа криптографических систем с открытым ключом. Если эту операцию научатся выполнять с той скоростью, которую обещают квантовые алгоритмы, то о большей части современной криптографии придётся забыть.

На квантовом компьютере IBM можно запустить алгоритм Шора, но пока кубитов не станет больше, пользы от этого мало. В течение следующих десяти лет ситуация изменится. К 2025 году в IBM планируют построить квантовый компьютер, содержащий от пятидесяти до ста кубитов. По мнению специалистов, уже при пятидесяти кубитах квантовые компьютеры смогут решать некоторые практические задачи.

Вот еще немного интересного про компьютерные технологии: почитайте, как , а вот А еще оказывается можно и что это за

Квантовый компьютер — это не просто компьютер будущего поколения, это нечто гораздо большее. Не только с точки зрения применения новейших технологий, но и с точки зрения его неограниченных, невероятных, фантастических возможностей, способных не только изменить мир людей, но даже … создавать иную реальность.

Как известно, современные компьютеры используют память, представленную в двоичном коде: 0 и 1. Точно так же как в азбуке Морзе — точка и титре. С помощью двух знаков можно зашифровать любую информацию, путем варьирования их сочетаний.

В памяти современного компьютера миллиарды этих битов. Но каждый из них может быть в одном из двух состояний — либо ноль, либо один. Как лампочка: либо включена, либо выключена.

Квантовый бит (кубит) — наименьший элемент хранения информации в компьютере будущего. Единицей информации в квантовом компьютере теперь может быть не только нуль или единица, а то и другое одновременно .

Одна ячейка выполняет два действия, две -четыре, четыре — шестнадцать и т. д. Именно поэтому квантовые системы могут работать в два раза быстрее и с большими объемами информации, чем современные.

Впервые «измерили» кубит (Q-bit) ученые Российского квантового центра (РКЦ) и Лаборатории сверхпроводящих мета материалов.

С технической стороны, кубит, — это диаметром в несколько микрон металлическое кольцо с разрезами, напылённое на полупроводник. Кольцо охлаждается до сверхнизких температур для того, что бы оно стало сверхпроводником. Допускаем, что ток, протекающий по кольцу, идет по часовой стрелке — это 1. Против — 0. То есть два обычных состояния.

Через кольцо пропустили микроволновое излучение. На выходе из кольца этого излучения, измеряли сдвиг тока по фазе. Оказалось, что вся эта система может находиться как в двух основных, так и смешанном состоянии: тем и другим одновременно!!! В науке это называется принципом суперпозиции.

Эксперимент русских ученых (аналогичный провели и ученые других стран), доказал, что кубит имеет право на жизнь. Создание кубита подвело к идее и приблизило ученых к мечте по созданию оптического квантового компьютера. Осталось его только сконструировать и создать. Но не все так просто…

Сложности, проблемы в создании квантового компьютера

Если требуется, к примеру, обсчитать миллиард вариантов в современном компьютере, то ему нужно «прокрутить» миллиард подобных циклов. На квантовом компьютере имеется принципиальное отличие, он может просчитывать все эти варианты одновременно.
Один из главных принципов, на которых будет работать квантовый компьютер, — это принцип суперпозиции и иначе, как магическим, его не назовешь!
Он означает, что один и тот же человек может находится в разных местах в одно и то же время. Физики шутят: » Если вас не шокирует квантовая теория, значит вы ее не поняли».

Внешний вид создаваемых сейчас квантовых компьютеров разительно отличается от классических. Они похожи… на самогонный аппарат:

Такая конструкция, сотоящая из медных и золотых частей, змеевиков-охладителей и пр. характерных деталей, разумеется не устраивает его создателей. Одна из основных задач ученых сделать ее компактной и дешевой. Что бы это произошло, нужно решить несколько проблем.

Проблема первая — неустойчивость суперпозиций

Все эти квантовые суперпозиции очень «нежные». Как только на них начинаешь смотреть, как только они начинают взаимодействовать с другими объектами, так они сразу разрушаются. Становятся, как бы классическими. Это одна из самых важных проблем в создании квантового компьютера.

Проблема вторая — требуется сильное охлаждение

Второе препятствие — для достижения стабильной работы квантового компьютера. в том виде, какой имеем на сегодня, требуется его сильное охлаждение. Сильное, это создание аппаратуры, в которой поддерживается температура близкая к абсолютному нулю — минус 273 градуса по Цельсию! Поэтому сейчас прототипы таких компьютеров, со своими криогенно-вакуумными установками, выглядят очень громоздко:

Однако ученые уверены, что вскоре все технические проблемы будут решены и однажды квантовые компьютеры, обладающие огромной вычислительной мощью, заменят современные.

Некоторые технические решения в решении проблем

К настоящему времени, ученые нашли ряд существенных решений в решении вышеизложенных проблем. Эти технологические находки, результат сложной, а иногда и длительной, напряженной работы ученых, заслуживает всяческого уважения.

Лучший путь к совершенствованию работы кубита… бриллианты

Все очень похоже на известную песню о девушках и бриллиантах. Главное, над чем сейчас работают ученые -поднять время жизни кубита, а так же «заставить» работать квантовый компьютер при обычных температурах . Да, для связи между квантовыми компьютерами нужны бриллианты! Для всего этого пришлось создавать и использовать искусственные алмазы сверх высокой прозрачности. С их помощью смогли продлить жизнь кубита до двух секунд. Эти скромные достижения: две секунды жизни кубита и работа компьютера при комнатной температуре, на самом деле революция в науке.

Суть эксперимента французского ученого Сержа Ароша основана на том, что он сумел показать всему миру, что свет (квантовый поток фотонов), проходящий между двумя специально созданными им зеркалами, не теряет квантового состояния.

Заставив свет пройти 40 000 км между этими зеркалами, он определил, все происходит без потери квантового состояния. Свет состоит из фотонов и до сих пор никто не мог выяснить, теряют ли они свое квантовое состояние при прохождении определенного расстояния. Лауреат Нобелевской премии Серж Арош: «Один фотон находится в нескольких местах одновременно , нам удалось это зафиксировать.» На самом деле это и есть принцип суперпозиции . «В нашем большом мире такое невозможно. А в микро-мире — другие законы.», — говорит Арош.


Внутри резонатора находились классические атомы, которые можно измерить. По поведению атомов физик научился определять и измерять неуловимые квантовые частицы. До экспериментов Ароша считалось, что наблюдение за квантами невозможно. После эксперимента — заговорили о покорении фотонов, то есть о приближении эры квантовых компьютеров.

Почему многие с нетерпением ждут создания полноценного квантового генератора, а другие его боятся

Квантовый компьютер подарит человечеству огромные возможности

Квантовый компьютер откроет перед человечеством необозримые возможности. Например, поможет создать искусственный разум, о котором столько времени бредят фантасты. Или смоделировать вселенную. Целиком. По самым скромным прогнозам он позволит заглянуть за грани возможного. Давайте представим мир, где можно смоделировать абсолютно все, что пожелаешь: спроектировать молекулу, сверхпрочный металл, быстро разлагающийся пластик, придумать лекарства от неизлечимых болезней. Машина смоделирует весь наш мир, целиком, до последнего атома. Можно даже смоделировать другой мир, пусть даже виртуальный.

Квантовый компьютер сможет стать орудием Апокалипсиса

Многие люди, вникнув в суть квантовой технологии, боятся ее по разным причинам. Уже сейчас компьютеризация и все околокомпьютерные технологии, пугают обывателя. Достаточно вспомнить скандалы о том, как специальные службы с помощью встроенных программ в ПК и даже бытовые приборы, организуют слежку и сбор данных об их потребителях. Например во многих странах запретили всем известные очки — ведь они являются идеальным средством для скрытой съемки и слежки. Уже сейчас, наверняка, каждый житель любой страны, а тем более пользователь в Сети, занесен в какую-нибудь базу данных. Более того и вполне реально, определенные службы могут просчитывать каждое его действие в интернете.

Но для квантовых компьютеров не будет тайн! Вообще никаких. Вся компьютерная безопасность держится на очень длинных числах-паролях. Что бы получить подобрать ключ к коду, обычному компьютеру понадобиться миллион лет. Но с помощью квантового это сможет сделать любой и мгновенно. Получается, что в мире станет совершенно небезопасно: ведь в современном мире все контролируется с помощью компьютеров: банковские переводы, полеты самолетов, фондовые биржи, ракетно-ядерное оружие! Вот и получается: кто владеет информацией, тот владеет Миром. Кто первый — тот и бог. Квантовый компьютер станет сильнее любого комплекса вооружений . На Земле может начаться (или уже началась) новая гонка вооружений, только теперь не ядерная, а компьютерная.

Дай нам Бог выйти из нее благополучно…

Человечество, как и 60 лет назад, снова стоит на пороге грандиозного прорыва в сфере вычислительных технологий. Уже очень скоро на смену сегодняшним вычислительным машинам придут квантовые компьютеры.

До чего дошёл прогресс

В далёком 1965 году Гордон Мур говорил, что за год количество транзисторов, вмещающихся в кремниевом микрочипе, увеличивается вдвое. Этот темп прогресса последнее время замедлился, и удвоение происходит реже - раз в два года. Даже такой темп в ближайшем будущем позволит достигнуть транзисторам размеров с атом. Дальше - рубеж, который переступить невозможно. С точки зрения физического строения транзистора он никак не может быть меньше атомарных величин. Увеличение размеров чипа проблему не снимает. Работа транзисторов связана с выделением тепловой энергии, и процессоры нуждаются в качественной системе охлаждения. Многоядерная архитектура также не решает вопрос дальнейшего роста. Достижение пика в развитии технологии современных процессоров произойдёт уже скоро.
Разработчики пришли к пониманию этой проблемы в то время, когда у пользователей только начали появляться персональные компьютеры. В 1980 году один из основателей квантовой информатики, советский профессор Юрий Манин, сформулировал идею квантовых вычислений. Уже через год Ричард Фейман предложил первую модель компьютера с квантовым процессором. Теоретические основы того, как должны выглядеть квантовые компьютеры, сформулировал Пол Бениофф.

Принцип работы квантового компьютера

Чтобы понимать, как работает новый процессор, необходимо иметь хотя бы поверхностные знания принципов квантовой механики. Нет смысла приводить здесь математические раскладки и выводить формулы. Обывателю достаточно ознакомиться с тремя отличительными особенностями квантовой механики:

  • Состояние или положение частицы определяется только с какой-либо долей вероятности.
  • Если частица может иметь несколько состояний, то она и находится сразу во всех возможных состояниях. Это принцип суперпозиции.
  • Процесс измерения состояния частицы приводит к исчезновению суперпозиции. Характерно, что полученное измерением знание о состоянии частицы отличается от реального состояния частицы до проведения замеров.

С точки зрения здравого смысла - полная бессмыслица. В нашем обычном мире эти принципы можно представить следующим образом: дверь в комнату закрыта, и в то же время открыта. Закрыта и открыта одновременно.

В этом и заключено разительное отличие вычислений. Обычный процессор оперирует в своих действиях бинарным кодом. Компьютерные биты могут находиться только в одном состоянии - иметь логическое значение 0 или 1. Квантовые компьютеры оперируют кубитами, которые могут иметь логическое значение 0, 1, 0 и 1 сразу. Для решения определённых задач они будут иметь многомиллионное преимущество по сравнению с традиционными вычислительными машинами. Сегодня уже есть десятки описаний алгоритмов работы. Программисты создают особый программный код, который сможет работать по новым принципам вычислений.

Где будет применяться новая вычислительная машина

Новый подход в процессе вычислений позволяет работать с огромными массивами данных и выполнять моментальные вычислительные операции. С появлением первых ЭВМ некоторые люди, включая государственных деятелей, имели большой скепсис относительно применения их в народном хозяйстве. Есть и сегодня люди, полные сомнений относительно важности компьютеров принципиально нового поколения. Весьма продолжительное время технические журналы отказывались печатать статьи о квантовых вычислениях, считая это направление обычной мошеннической уловкой для одурачивания инвесторов.

Новый способ вычислений создаст предпосылки для научных грандиозных открытий во всех отраслях. Медицина решит многие проблемные вопросы, которых накопилось в последнее время довольно много. Станет возможным диагностика раковых заболеваний на более раннем этапе заболевания, чем сейчас. Химическая промышленность сможет синтезировать продукты с уникальными свойствами.

Прорыв в космонавтике не заставит себя ждать. Полёты к другим планетам станут таким же обыденным действием, как и ежедневные поездки по городу. Потенциал, который заложен в квантовых вычислениях, безусловно, преобразит нашу планету до неузнаваемости.

Другая отличительная особенность, которой обладают квантовые компьютеры, это способность квантового вычисления быстро подобрать нужный код или шифр. Обычный компьютер выполняет решение математической оптимизации последовательно, перебирая один вариант за другим. Квантовый конкурент работает сразу со всем массивом данных, молниеносно выбирая наиболее подходящие варианты за беспрецедентно короткое время. Банковские операции будут расшифрованы в мгновение ока, что современным вычислительным машинам недоступно.

Однако банковский сектор может не переживать - его тайну спасёт метод квантового шифрования с парадоксом измерения. При попытке вскрыть код произойдёт искажение передаваемого сигнала. Полученная информация не будет иметь никакого смысла. Секретные службы, шпионаж для которых - обычное дело, заинтересованы в возможностях квантовых вычислений.

Трудности конструирования

Сложность заключается в создании условий, при которых квантовый бит сможет бесконечно долго находиться в состоянии суперпозиции.

Каждый кубит представляет собой микропроцессор, который работает на принципах сверхпроводимости и законах квантовой механики.

Вокруг микроскопических элементов логической машины создаётся целый ряд уникальных условий окружающей среды:

  • температура 0,02 градуса по Кельвину (-269,98 по Цельсию);
  • система защиты от магнитного и электрического излучения (снижает воздействие этих факторов в 50 тысяч раз);
  • система теплоотвода и гашения вибраций;
  • разрежение воздуха ниже атмосферного давления в 100 миллиардов раз.

Небольшое отклонение окружающей среды вызывает мгновенную потерю кубитами состояния суперпозиции, что приводит к сбою в работе.

Впереди планеты всей

Всё вышеописанное можно было бы отнести к творчеству воспалённого разума писателя фантастических рассказов, если бы компания Google совместно с NASA не приобрела в прошлом году у канадской исследовательской корпорации квантовый компьютер D-Wave, процессор которого содержит 512 кубитов.

С его помощью лидер на рынке компьютерных технологий будет решать вопросы машинного обучения в сортировке и анализе больших массивов данных.

Немаловажное разоблачительное заявление сделал и покинувший США Сноуден - АНБ также планирует разработать свой квантовый компьютер.

2014 -начало эры D-Wave systems

Успешный канадский спортсмен Джорди Роуз после сделки с Google и NASA приступил к построению процессора в 1000 кубитов. Будущая модель по скорости и объёмам вычислений превзойдёт первый коммерческий прототип минимум в 300 тысяч раз. Квантовый компьютер, фото которого расположено ниже, является первым в мире коммерческим вариантом принципиально новой технологии вычислений.

Заняться научными разработками его побудило знакомство в университете с трудами Колина Уильямса по квантовым вычислениям. Надо сказать, что Уильямс сегодня работает в корпорации Роуза руководителем бизнес-проектов.

Прорыв или научный обман

Что такое квантовые компьютеры, до конца не знает и сам Роуз. За десять лет его команда прошла путь от создания процессора в 2 кубита до сегодняшнего первого коммерческого детища.

С самого начала исследований Роуз стремился создать процессор с минимальным количеством кубитов в 1 тысячу. И он обязательно должен был иметь коммерческий вариант - чтобы продать и заработать денег.

Многие, зная одержимость и коммерческую хватку Роуза, пытаются обвинить его в подлоге. Якобы за квантовый выдаётся самый обычный процессор. Этому способствует и то, что феноменальное быстродействие новая техника проявляет при выполнении определённых типов вычислений. В остальном же ведёт себя как вполне заурядный компьютер, только очень дорогой.

Когда же они появятся

Ждать осталось недолго. Исследовательская группа, организованная совместными приобретателями прототипа, в скором будущем даст отчёт о результате исследований на D-Wave.
Возможно, скоро грядёт время, в котором квантовые компьютеры перевернут наше представление об окружающем мире. И всё человечество в этот момент выйдет на более высокий уровень своей эволюции.

Похожие статьи

  • Первое знакомство с беспроводным роутером Asus RT-AC87U Настройка подключения для роутера ASUS RT-AC87U

    Инженеры ASUS не дремлют и продолжают удивлять публику новыми сетевыми продуктами и мощностями. На этот раз компания ASUS предлагает ультимативный ответ, для тех, кто не любит компромиссы. Встречайте, ASUS RT-AC87U Логическое продолжение...

  • История компании (Sony) Ericsson

    Бренд: Sony Слоган: Воплотить в реальность Отрасль: Аудио и видео; финансовые сервисы Продукция: Бытовая и профессиональная электроника Компания-владелец: Sony Corporation Год основания: 1946 Штаб-квартира: Япония Sony Corporation,...

  • Почему css. Решение проблем с CSS. Зачем нужны стили CSS в отдельном файле

    Здравствуйте, уважаемые читатели блога сайт. Сегодня я хотел бы поговорить о том, зачем вам может понадобиться при вашей работе с сайтом знание языка HTML (читайте про то, что это такое ), основы работы с таблицами каскадных стилей CSS...

  • Инстаграм аккаунт Лены Миро (miss tramell) Оппоненты лены миро в жж

    Думаю, даже самые консервативные пользователи Сети, которые не заходят дальше любимых пабликов в избранной им социальной сети, хотя бы краем уха слышали о Лене Миро . Ее скандальные материалы известны во всех странах на территории бывшего...

  • Не работает USB-разъем, что делать Телефон не распознаёт USB-кабель

    Почему телефон не видит USB-кабель? USB-кабель является важным компонентом для любого смартфона. С его помощью можно как заряжать телефон, так и передавать данные с телефона на персональный компьютер или ноутбук. Однако случаются ситуации,...

  • Как увеличить файл подкачки?

    Операционная система изначально настроена так, чтобы обеспечивать оптимальную работу на всех моделях ноутбуков или стационарных компьютеров. Комплектующие и ресурсы у ПК могут быть разные, поэтому возникает необходимость пользователям...